A team of researchers from the National University of Singapore (NUS) have found a way to make personalized medicine cheaper and easier. Imagine combining the all of the pills a patient needs to take for their ailment in just one tablet. What if a patient could to take their medication only once a day (rather than multiple) and the drug would be slowly released throughout the day at different rates to treat their illness? Or, what if doctors could easily make tablets on the spot that are tailored to each patient’s needs?
All these could become a reality with a new method of tablet fabrication designed by Assistant Professor Soh Siow Ling and PhD student Ms. Sun Yajuan from the Department of Chemical and Biomolecular Engineering at the NUS Faculty of Engineering. The novel system can make customizable pills that release drugs with any desired release profiles.
Customized Tablets for Optimal Therapeutic Results
Releasing drugs in a timely manner is important for optimal therapeutic effect in the human body. Different types of clinical circumstances may call for different types of timed release of drugs.
One common type of release profile is that of a constant one: the drug is released at the same rate for a period of time, as there is only a narrow range of concentration in which the drug can be effective. However, certain chemicals, such as hormones, may need to be released in pulses at regular intervals, in sync with the biological cycles of the human body. In situations where a relatively large dose of drug is needed initially to act against their targets rapidly, followed by gradually lower levels to maintain health. For example, in arthritis, a large dose is required initially to eliminate pain in the morning, followed by smaller doses to keep the pain from recurring.
While there are some existing tablet-production methods, including 3D printing, that can allow certain flexibility, they have their limitations—low dosage, release profiles that are non-continuous, or the drugs are released in a large burst in the initial stage and poor durability of the tablet given its quick breakdown. These methods are also only able to fabricate tablets that release drugs with a limited type of profiles.
A Fully Customizable Fabrication Method
“For a long time, personalized tablets has been a mere concept as it was far too complex or expensive to be realized. This new tablet fabrication method is a game changer—it is technically simple, relatively inexpensive, and versatile. It can be applied at individualized settings where physicians could produce customized pills on the spot for patients or in mass production settings by pharmaceutical companies,” said Siow Ling.
Instead of manufacturing the drug tablet by printing layer by layer, the drug tablet designed by Siow Ling and Yajuan consists of three distinct components, including a polymer containing the drug in a specifically-designed shape that will determine the rate of release of the drug. For instance, a 5-prong shape will allow the drug to be released in five pulses over time. By adjusting the shape of the drug-containing polymer, it is thus possible to release drugs at any desired rate.
Using the system designed by the NUS team, a doctor only needs to draw the desired release profile in a computer software to generate a template for making tablets specific to a patient’s treatment, which can then be used to easily produce the desired pills using a 3D printer. The system is easy to use and does not involve any complex mathematical computation whenever a new release profile is needed. The fully-customizable system is able to create a template to print tablets for any release profile.
The use of a commercially-available 3D printer in this method also makes it a relatively cheap way of making personalized medicine a reality, as compared to conventional tablet production or other methods in making small shapes, such as photolithography.
In drug delivery, it is also often important to administer more than one type of drug into the human body simultaneously to treat an illness. The fabrication method developed by Siow Ling can be modified to include multiple types of drugs loaded within the same tablet—and more importantly, each drug can be customized to release at different rates even within the same tablet.
Aside from exploring commercialization possibilities, the NUS team is currently doing further work to explore the various combination of materials for the different polymer-based components in the tablet to cater to various types of drugs and illnesses to increase the efficacy of this method.
Follow us on Twitter and Facebook for updates on the latest pharmaceutical and biopharmaceutical manufacturing news!