Pharmaceutical Processing World

  • Home
  • Regulatory
    • Recalls
  • Pharmaceutical Processing
  • Facility
  • Supply Chain
  • Equipment and Materials
  • Contract Manufacturing
  • Resources
    • Voices
  • Advertise
  • SUBSCRIBE

Major Laser: These Scientists Are Writing the 3D-Printing Cookbook for GE

By Todd Alhart, GE Reports | April 13, 2016

Additive manufacturing engineer Brian Adkins in full gear is preparing a DMLM machine for printing. (Photo credit: GE Reports/Chris New)

It would be a stretch to say that Joe Vinciquerra is the Julia Child of GE. But Vinciquerra, the manager of the newly formed Additive Materials Lab at GE Global Research, is creating a cookbook that will likely impact manufacturing across GE the same way “Mastering the Art of French Cooking” shook up American kitchens.

Additive manufacturing, commonly known as 3D printing, is exploding right now. GE estimates that by 2025, more than 20 percent of new products will involve additive processes of some kind. But there’s no cookbook that standardizes the recipes, which have oodles of parameters that determine the properties of the final part.

“It’s like baking a cake. You need to start with the right recipe, then you need to have the right ingredients and the right oven,” Vinciquerra says. “A cup of materials science, a tablespoon of design and a whole lot of machine-control strategies must come together and yield perfection.”

Technologies like direct metal laser melting (DMLM), for example, can involve several lasers as powerful as 1 kilowatt—enough to burn a hole in a wall—fusing as many as 1,250 layers of fine superalloy powder into the desired shape. Some large builds can take days to finish.

support block with 3D printed parts inside a DMLM printed in Pittsburgh. (Photo credit: GE Reports/Chris New)

Last week, GE opened a new industrial-scale 3D-printing center in Pittsburgh, Pennsylvania. It will work closely with Vinciquerra’s team, test their findings and get GE factories quickly cooking with additive.

His team has already started testing and tabling the powdered materials used in additive manufacturing and their properties. “We want to know how they come together, how they affect each other and what machines and processes are best suited for them,” Vinciquerra says. “It’s just like a gourmet recipe. We need to know how our ingredients are going to react in a mixer or an oven. And what changes can we make to those ingredients, the mixer or the oven to produce a more palatable dish?”

The team is pulling in expertise from other labs on the GE Global Research campus in Niskayuna, New York, including scientists focusing on nanomaterials, microstructures and machine design. The company calls the cross-pollination of know-how the GE Store.

Vinciquerra (right) and Andy Deal, a metallurgist in the Additive Materials Lab are loading sets of sample 3D printed metal parts in a vacuum oven for post-processing at GE Global Research. (Photo credit: GE Global Research.)

GE materials scientists are no strangers to new materials. They spent two decades developing light- and heat-resistant materials called ceramic matrix composites that outperform even the most advanced superalloys and make jet engines and gas turbines lighter and more efficient. But additive materials live in a different universe. “With additive, you can design as you go and create architectures that cannot be manufactured by any other means,” Vinciquerra says.

He says that GE engineers can already design components with sophisticated, performance-enhancing features previously unattainable by any other means of manufacturing. The next-generation LEAP jet engine—developed by CFM International, a joint venture between GE Aviation and France’s Snecma (Safran)—uses 3D-printed fuel nozzles, which are 25 percent lighter and five times more durable. They used to be made from 18 separate parts and now they come in one piece. A year ago, the Federal Aviation Administration (FAA) approved a fist-sized housing for a sensor as the first 3D-printed part to fly inside GE commercial jet engines.

“This is just the beginning,” Vinciquerra says. “Someday, we may even be able to combine materials together in ways previously not possible to unlock new capabilities that never existed. Can I create a new class of materials that open the design envelope and push the limits of durability and heat resistance beyond what we thought was even possible? We’re going to find out.”

To read the original story, published on GE Reports, click here! 

Follow us on Twitter and Facebook for updates on the latest pharmaceutical and biopharmaceutical manufacturing news!

Related Articles Read More >

Moving toward the autonomous lab and what’s possible today
Female worker at pharmaceutical factory operating control panel of the pharmaceutical machine.
How real-time sensors and data-savvy can cut energy waste in pharma
Getinge DPTE-FLEX on a white background.
Getinge launches manual, externally openable port for pharma manufacturing
sherwin-williams-pharma-facility (1)
Sherwin-Williams expands flooring solutions for pharma facilities
“ppw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news, technologies, and developments in Pharmaceutical Processing.

DeviceTalks Tuesdays

DeviceTalks Tuesdays

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Pharmaceutical Processing World
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Drug Discovery & Development
  • DeviceTalks
  • MassDevice
  • Medical Design & Outsourcing
  • MEDICAL TUBING + EXTRUSION
  • Medical Design Sourcing
  • Medtech100 Index
  • R&D 100 Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Pharmaceutical Processing World

  • Home
  • Regulatory
    • Recalls
  • Pharmaceutical Processing
  • Facility
  • Supply Chain
  • Equipment and Materials
  • Contract Manufacturing
  • Resources
    • Voices
  • Advertise
  • SUBSCRIBE